


Chapter 17
CRS Questions

Solubility and Complex-Ion Equilibria

		K_{sp}
1)	BaSO ₄	1.1×10^{-10}
2)	BaCrO ₄	1.2×10^{-10}
3)	AgC1	1.8×10^{-10}
4)	MnS	2.5×10^{-10}
5)	SrCO ₃	9.3×10^{-10}

Which salt has the highest molar solubility?

5) SrCO₃

Section 17.1 The Solubility Product Constant (pp. 528–531)

Since the ratio of cation-to-anion is 1:1 for all the salts, the molar solubilities will be ranked in the same order as the solubility product constants. Of the choices given, SrCO₃ has the highest molar solubility.

The molar solubility for barium fluoride, BaF₂, is 6.3×10^{-3} M at 25°C. Calculate the solubility product constant for barium fluoride.

- 1) 4.0×10^{-8}
- 2) 2.5×10^{-7}
- 3) 1.0×10^{-6}
- 4) 2.5×10^{-5}
- 5) 4.0×10^{-4}

3)
$$1.0 \times 10^{-6}$$

Section 17.1 The Solubility Product Constant (pp. 528–531)

$$K_{\rm sp} = [{\rm Ba}^{2+}][{\rm F}^{-}]^2 = (x)(2x)^2 = 4x^3 = 4(6.3 \times 10^{-3})^3$$

= 1.0×10⁻⁶.

The best way to ensure complete precipitation of SnS from a saturated H₂S solution is to

- 1) add more H_2S .
- 2) add a strong acid.
- 3) add a weak acid.
- 4) add a strong base.
- 5) add a weak base.

4) add a strong base.

Section 17.2 Solubility and the Common Product Effect (pp. 531–533)

Strong base will react with H_2S to increase the concentration of S^{2-} . This will shift the equilibrium $SnS \rightleftarrows Sn^{2+} + S^{2-}$ towards the left.

K_{sp} for Fe(IO₃)₃ is 10⁻¹⁴. Mix two solutions, one containing Fe³⁺ and the other IO₃⁻. If, at the instant of mixing, Fe³⁺ is 10⁻⁴ M and IO₃⁻ is 10⁻⁵ M, which one of the following statements is true?

- 1) A precipitate forms because $Q_{sp} > K_{sp}$.
- 2) A precipitate forms because $Q_{sp} < K_{sp}$.
- 3) No precipitate forms because $Q_{sp} > K_{sp}$.
- 4) No precipitate forms because $Q_{sp} < K_{sp}$.
- 5) None of these statements is true.

4) No precipitate forms because $Q_{sp} < K_{sp}$.

Section 17.3 Precipitation Calculations (pp. 533–535)

$$Q_{sp} = [Fe^{3+}][IO_3^{-1}]^3 = (10^{-4})(10^{-5})^3 = 10^{-19} < K_{sp}$$

A solution is 0.010 M in each of Pb(NO₃)₂, Mn(NO₃)₂, and Zn(NO₃)₂. Solid NaOH is added until the [OH⁻] of the solution is 3.0×10^{-6} M. $K_{sp} = 2.8 \times 10^{-16}$ for Pb(OH)₂, 4.5×10^{-14} for Mn(OH)₂, and 4.5×10^{-17} for Zn(OH)₂. Which of the following statements is true?

- 1) No precipitate will form.
- 2) Only Zn(OH)₂ will precipitate.
- 3) Only Mn(OH)₂ will precipitate.
- 4) Only Zn(OH)₂ and Pb(OH)₂ will precipitate.
- 5) All three hydroxides will precipitate.

5) All three hydroxides will precipitate.

Section 17.3 Precipitation Calculations (pp. 533–535)

For all three solutions,

$$Q = [M^{2+}][OH^{-}]^{2} = (0.010 \text{ M})(3 \times 10^{-6} \text{ M})^{2} = 9.0 \times 10^{-14}.$$

Since this value exceeds all three K_{sp} 's, all three of the metal ions precipitate.